
115-214

School	of	
Computer	Science

Principles	of	Software	Construction:	
Objects,	Design,	and	Concurrency

More	Introductory	Java,
Specification	and	Testing

Josh	Bloch Charlie	Garrod

215-214

Administrivia

• First	homework	due	today,	11:59	PM
• I	will	be	joining	Tuan	in	Citadel	Commons	for	a	
special	HW	office	hour	from	5:00-6:00	today

• Second	homework	will	be	posted	shortly

315-214

Key	concepts	from	Tuesday

• Interfaces-based	designs	are	flexible
• Information	hiding	is	crucial	to	good	design
• Exceptions	are	way	better	than	error	codes
• The	need	for	checked	exceptions	is	rare

415-214

Unfinished	Business:
Exceptions

515-214

Remember	this	slide	from	Tuesday?
You	can	do	much	better!

FileInputStream fileInput = null;
try {

fileInput = new FileInputStream(fileName);
DataInput dataInput = new DataInputStream(fileInput);
return dataInput.readInt();

} catch (FileNotFoundException e) {
System.out.println("Could not open file " + fileName);

} catch (IOException e) {
System.out.println("Couldn’t read file: " + e);

} finally {
if (fileInput != null) fileInput.close();

}

615-214

Manual	resource	termination	is	ugly	
and	error	prone
• Even	good	programmers	usually	get	it	wrong
– Sun’s	guide	to	Persistent	Connections	got	it	wrong	
in	code	that	claimed	to	be	exemplary

– Solution	on	page	88	of	Bloch	and	Gafter’s Java	
Puzzlers	is	badly	broken;	no	one	noticed	for	years

• 70%	of	the	uses	of	the	closemethod	in	the	
JDK	itself	were	wrong	in	2008(!)

• Even	“correct”	idioms	for	manual	resource	
management	are	deficient

6

715-214

The	solution:	try-with-resources
automatically	closes	resources

try (DataInput dataInput =
new DataInputStream(new FileInputStream(fileName))) {

return dataInput.readInt();
} catch (FileNotFoundException e) {

System.out.println("Could not open file " + fileName);
} catch (IOException e) {

System.out.println("Couldn’t read file: " + e);
}

815-214

File	copy	without	ARM

static void copy(String src, String dest) throws IOException {
InputStream in = new FileInputStream(src);
try {

OutputStream out = new FileOutputStream(dest);
try {

byte[] buf = new byte[8 * 1024];
int n;
while ((n = in.read(buf)) >= 0)

out.write(buf, 0, n);
} finally {

out.close();
}

} finally {
in.close();

}
}

}
8

915-214

File	copy	with	ARM

static void copy(String src, String dest) throws IOException {
try (InputStream in = new FileInputStream(src);

OutputStream out = new FileOutputStream(dest)) {
byte[] buf = new byte[8 * 1024];
int n;
while ((n = in.read(buf)) >= 0)

out.write(buf, 0, n);
}

}

9

1015-214

Outline

I. Overriding	Objectmethods
II. Enums
III. Specifying	program	behavior	– contracts
IV. Testing	correctness	– Junit	and	friends

1115-214

Review:	Objectmethods

• equals – true	if	the	two	objects	are	“equal”
• hashCode – a	hash	code	for	use	in	hash	maps
• toString – a	printable	string	representation	

1215-214

Overriding	toString
review

final class PhoneNumber {
private final short areaCode;
private final short prefix;
private final short lineNumber;
...

@Override public String toString() {
return String.format("(%03d) %03d-%04d",

areaCode, prefix, lineNumber);
}

}

Number jenny = ...;
System.out.println(jenny);
Prints:	(707) 867-5309

1315-214

Review:	Object implementations

• toString – ugly and	uninformative
– You	know	what	your	object	is	so	you	can	do	better
– Always	override	unless	you	know	in	won’t	be	called

• equals &	hashCode – identity semantics
– You	must override	if	you	want	value semantics
– Otherwise	don’t
– In	Lecture	2,	I	said	it	was	hard	to	override	them
– I	lied

1415-214

The	equals contract	

The	equals	method	implements	an	equivalence	relation.	It	is:
– Reflexive:	For	any	non-null	reference	value	x,	x.equals(x)	must	

return	true.
– Symmetric:	For	any	non-null	reference	values	x	and	y,	x.equals(y)	

must	return	true	if	and	only	if	y.equals(x)	returns	true.
– Transitive:	For	any	non-null	reference	values	x,	y,	z,	if	x.equals(y)	

returns	true	and	y.equals(z)	returns	true,	then	x.equals(z)	must	
return	true.

– Consistent:	For	any	non-null	reference	values	x	and	y,	multiple	
invocations	of	x.equals(y)	consistently	return	true	or	consistently	
return	false,	provided	no	information	used	in	equals	comparisons	
on	the	objects	is	modified.

– For	any	non-null	reference	value	x,	x.equals(null)	must	return	false.

1515-214

The	equals contract	in	English

• Reflexive – every	object	is	equal	to	itself
• Symmetric – if a.equals(b) then	b.equals(a)
• Transitive – if	a.equals(b) and	b.equals(c),	
then	a.equals(c)

• Consistent– equal	objects	stay	equal	unless	mutated
• “Non-null”	– a.equals(null) returns	false
• Taken	together	these	ensure	that	equals	is	a	
global	equivalence	relation	over	all	objects

1615-214

equals Override	Example

public final class PhoneNumber {
private final short areaCode;
private final short prefix;
private final short lineNumber;

@Override public boolean equals(Object o) {
if (!(o instanceof PhoneNumber)) // Does null check

return false;
PhoneNumber pn = (PhoneNumber) o;
return pn.lineNumber == lineNumber

&& pn.prefix == prefix
&& pn.areaCode == areaCode;

}

...
}

1715-214

The	hashCode contract

Whenever	it	is	invoked	on	the	same	object	more	than	once	during	an	execution
of	an	application,	the	hashCode method	must	consistently	return	the
same	integer,	provided	no	information	used	in	equals	comparisons	on	the
object	is	modified.	This	integer	need	not	remain	consistent	from	one	execution
of	an	application	to	another	execution	of	the	same	application.
– If	two	objects	are	equal	according	to	the	equals(Object)	method,	then	calling	

the	hashCode method	on	each	of	the	two	objects	must	produce	the	same	
integer	result.

– It	is	not	required	that	if	two	objects	are	unequal	according	to	the	
equals(Object)	method,	then	calling	the	hashCode method	on	each	of	the	two	
objects	must	produce	distinct	integer	results.	However,	the	programmer	
should	be	aware	that	producing	distinct	integer	results	for	unequal	objects	
may	improve	the	performance	of	hash	tables.

1815-214

The	hashCode contract	in	English

• Equal	objects	must	have	equal	hash	codes
– If	you	override	equals you	must	override	hashCode

• Unequal	objects	should have	different	hash	codes
– Take	all	value	fields	into	account	when	constructing	it

• Hash	code	must	not	change	unless	object	mutated

1915-214

hashCode override	example

public final class PhoneNumber {
private final short areaCode;
private final short prefix;
private final short lineNumber;

@Override public int hashCode() {
int result = 17; // Nonzero is good
result = 31 * result + areaCode; // Constant must be odd
result = 31 * result + prefix; // " " " "
result = 31 * result + lineNumber; // " " " "
return result;

}

...
}

2015-214

Alternative	hashCode override
Less	efficient,	but	otherwise	equally	good!
public final class PhoneNumber {

private final short areaCode;
private final short prefix;
private final short lineNumber;

@Override public int hashCode() {
return arrays.hashCode(areaCode, prefix, lineNumber);

}

...
}

A	one	liner.	No	excuse	for	failing	to	override	hashCode!

2115-214

For	more	than	you	want	to	know	about	overriding	
object	methods,	see	Effective	Java	Chapter	2

2215-214

The	== operator		vs.	equalsmethod

• For	primitives	you	must use	==
• For	object	reference	types	
– The	== operator	provides	identity	semantics
• Exactly	as	implemented	by	Object.equals
• Even	if	Object.equals has	been	overridden
• This	is	seldom	what	you	want!

– you	should	(almost)	always	use	.equals
– Using ==on	an	object	reference	is	a	bad	smell	in	code

if (input == "yes") // A bug!!!

2315-214

Pop	quiz:	what	does	this	print?
public class Name {

private final String first, last;
public Name(String first, String last) {

if (first == null || last == null)
throw new NullPointerException();

this.first = first; this.last = last;
}
public boolean equals(Name o) {

return first.equals(o.first) && last.equals(o.last);
}
public int hashCode() {

return 31 * first.hashCode() + last.hashCode();
}
public static void main(String[] args) {

Set<Name> s = new HashSet<>();
s.add(new Name("Mickey", "Mouse"));
System.out.println(

s.contains(new Name("Mickey", "Mouse")));
}

}

(a)	true
(b)	false
(c)	It	varies
(d)	None	of	the	above

2415-214

What	Does	It	Print?

(a)	true
(b)	false
(c)	It	varies
(d)	None	of	the	above

Name overrides	hashCode but	not	equals!
The	two	Name instances	are	thus	unequal.

2515-214

Another	Look
public class Name {

private final String first, last;
public Name(String first, String last) {

if (first == null || last == null)
throw new NullPointerException();

this.first = first; this.last = last;
}
public boolean equals(Name o) { // Accidental overloading!

return first.equals(o.first) && last.equals(o.last);
}
public int hashCode() { // Overriding

return 31 * first.hashCode() + last.hashCode();
}
public static void main(String[] args) {

Set<Name> s = new HashSet<>();
s.add(new Name("Mickey", "Mouse"));
System.out.println(

s.contains(new Name("Mickey", "Mouse")));
}

}

2615-214

How	Do	You	Fix	It?
Replace	the	overloaded	equalsmethod	with	an	
overriding	equalsmethod

@Override public boolean equals(Object o) {
if (!(o instanceof Name))

return false;
Name n = (Name) o;
return n.first.equals(first) && n.last.equals(last);

}

With	this	change,	program	prints	true

2715-214

The	Moral	of	this	puzzler

• If	you	want	to	override	a	method:
–Make	sure	signatures	match
– Use	@Override so	compiler	has	your	back
– Do copy-and-paste	declarations	(or	let	IDE	do	it	for	you)

2815-214

Outline

I. Overriding	Objectmethods
II. Enums
III. Specifying	program	behavior	– contracts
IV. Testing	correctness	– Junit	and	friends

2915-214

Enums
review
• Java	has	object-oriented	enums
• In	simple	form,	they	look	just	like	C	enums:

public enum Planet { MERCURY, VENUS, EARTH, MARS,
JUPITER, SATURN, URANUS, NEPTUNE }

• But	they	have	many	advantages	[EJ	Item	30]!
– Compile-time	type	safety
– Multiple	enum types	can	share	value	names
– Can	add	or	reorder	without	breaking	constants
– High-quality	Objectmethods
– Screaming	fast	collections	(EnumSet,	EnumMap)
– Can	iterate	over	all	constants	of	an	enum

3015-214

You	can	add	data	to	enums
public enum Planet {

MERCURY(3.302e+23, 2.439e6), VENUS (4.869e+24, 6.052e6),
EARTH (5.975e+24, 6.378e6), MARS (6.419e+23, 3.393e6);

private final double mass; // In kg.
private final double radius; // In m.

private static final double G = 6.67300E-11;

Planet(double mass, double radius) {
this.mass = mass;
this.radius = radius;

}
public double mass() { return mass; }
public double radius() { return radius; }
public double surfaceGravity() { return G * mass / (radius * radius); }

}

3115-214

You	can	add	behavior	too!

public enum Planet {
... as on previous slide

public double surfaceWeight(double mass) {
return mass * surfaceGravity; // F = ma

}
}

3215-214

Watch	it	go

public static void main(String[] args) {
double earthWeight = Double.parseDouble(args[0]);
double mass = earthWeight / EARTH.surfaceGravity();
for (Planet p : Planet.values()) {

System.out.printf("Your weight on %s is %f%n",
p, p.surfaceWeight(mass));

}
}

$ java Planet 180
Your weight on MERCURY is 68.023205
Your weight on VENUS is 162.909181
Your weight on EARTH is 180.000000
Your weight on MARS is 68.328719

3315-214

Can	add	constant-specific	behavior

• Each	const can	have	its	own	override	of	a	method
– Don't	do	this	unless	you	have	to
– If	adding	data	is	sufficient,	do	that	instead
public interface Filter { Image transform(Image original); }

public enum InstagramFilter implements Filter {
EARLYBIRD {public Image transform(Image original) { ... }},
MAYFAIR {public Image transform(Image original) { ... }},
AMARO {public Image transform(Image original) { ... }},
RISE {public Image transform(Image original) { ... }};

}

// See Effective Java Items 30 and 34 for more information

3415-214

Outline

I. Overriding	Objectmethods
II. Enums
III. Specifying	program	behavior	– contracts
IV. Testing	correctness	– Junit	and	friends

3515-214

What	is	a	contract?
review
• Agreement	between	an	object	and	its	user
• Includes
–Method	signature	(type	specifications)
– Functionality	and	correctness	expectations
– Performance	expectations

• What	the	method	does,	not	how	it	does	it
– Interface	(API),	not	implementation

• “Focus	on	concepts	rather	than	operations”

3615-214

Method	contract	details

• States	method’s	and	caller’s	responsibilities
• Analogy:	legal	contract
– If	you	pay	me	this	amount	on	this	schedule…
– I	will	build	a	with	the	following	detailed	specification
– Some	contracts	have	remedies	for	nonperformance

• Method	contract	structure
– Preconditions:	what	method	requires	for	correct	operation
– Postconditions:	what	method	establishes	on	completion
– Exceptional	behavior:	what	it	does	if	precondition	violated

• Defines	what	it	means	for	impl to	be	correct
36

3715-214

Formal	contract	specification
Java	Modelling	Language	(JML)
/*@ requires len >= 0 && array != null && array.length == len;
@
@ ensures \result ==
@ (\sum int j; 0 <= j && j < len; array[j]);
@*/

int total(int array[], int len);

• Theoretical	approach
– Advantages

• Runtime	checks	generated	automatically
• Basis	for	formal	verification
• Automatic	analysis	tools

– Disadvantages
• Requires	a	lot	of	work
• Impractical	in	the	large
• Some	aspects	of	behavior	not	amenable	to	formal	specification

postcondition

precondition

3815-214

Textual	specification	- Javadoc
• Practical	approach
• Document
– Every	parameter
– Return	value
– Every	exception	(checked	and	unchecked)
– What	the	method	does,	including

• Purpose
• Side	effects
• Any	thread	safety	issues
• Any	performance	issues

• Do	not document	implementation	details

3915-214

Specifications	in	the	real	world
Javadoc
/**
* Returns the element at the specified position of this list.
*
* <p>This method is <i>not</i> guaranteed to run in constant time.
* In some implementations, it may run in time proportional to the
* element position.
*
* @param index position of element to return; must be non-negative and
* less than the size of this list.
* @return the element at the specified position of this list
* @throws IndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= this.size()})
*/
E get(int index);

postcondition

precondition

4015-214

Outline

I. Overriding	Objectmethods
II. Enums
III. Specifying	program	behavior	– contracts
IV. Testing	correctness	– Junit	and	friends

4115-214

Semantic	correctness
adherence	to	contracts

• Compiler	ensures	types	are	correct	(type-checking)
– Prevents	many	runtime	errors,	such	as	“Method	
Not	Found”	and	“Cannot	add	boolean to	int”

• Static	analysis	tools	(e.g.,	FindBugs)	recognize	
many	common	problems	(bug	patterns)
– Overiding equals without	overriding	hashCode

• But	how	do	you	ensure	semantic	correctness?

41

4215-214

Formal	verification

• Use	mathematical	methods	to	prove	correctness	
with	respect	to	the	formal	specification

• Formally	prove	that	all	possible	executions	of	
an	implementation	fulfill	the	specification

• Manual	effort;	partial	automation;	not	
automatically	decidable

"Testing	shows	the	presence,	
not	the	absence	of	bugs.”

Edsger W.	Dijkstra,	1969

4315-214

Testing

• Executing	the	program	with	selected	inputs	in	a	
controlled	environment

• Goals
– Reveal	bugs,	so	they	can	be	fixed	(main	goal)
– Assess	quality
– Clarify	the	specification,	documentation

“Beware	of	bugs	in	the	above	code;	I
have	only	proved	it	correct,	not	tried	it.”

Donald	Knuth,	1977

4415-214

Who’s	right,	Dijkstra or	Knuth?

• They’re	both	right!
• Please	see	“Extra,	Extra	- Read	All	About	It:	Nearly	All	
Binary	Searches	and	Mergesorts are	Broken”
– Official	“Google	Research”	blog
– http://googleresearch.blogspot.com/2006/06/extr
a-extra-read-all-about-it-nearly.html

• There	is	no	silver	bullet
– Use	all	tools	at	your	disposal

4515-214

Manual	testing?

• Live	System?
• Extra	Testing	System?
• Check	output	/	assertions?
• Effort,	Costs?
• Reproducible?

4615-214

Automate	testing

• Execute	a	program	with	specific	inputs,	
check	output	for	expected	values

• Set	up	testing	infrastructure
• Execute	tests	regularly
– After	every change

4715-214

Unit	tests

• Unit	tests	for	small	units:	methods,	classes,	subsystems
– Smallest	testable	part	of	a	system
– Test	parts	before	assembling	them
– Intended	to	catch	local	bugs

• Typically	written	by	developers
• Many	small,	fast-running,	independent	tests
• Few	dependencies	on	other	system	parts	or	environment
• Insufficient,	but	a	good	starting	point

4815-214

JUnit

• Popular	unit-testing	framework	for	Java
• Easy	to	use
• Tool	support	available
• Can	be	used	as	design	mechanism

4915-214

Selecting	test	cases:	common	strategies

• Read	specification
• Write	tests	for

– Representative	case
– Invalid	cases
– Boundary	conditions

• Write	stress	tests
– Automatically	generate	huge	numbers	of	test	cases

• Think	like	an	attacker
– The	tester’s	goal	is	to	find	bugs!

• How	many	test	should	you	write?
– Aim	to	cover	the	specification
– Work	within	time/money	constraints

5015-214

JUnit conventions

• TestCase	collects	multiple	tests	(in	one	class)
• TestSuite	collects	test	cases	(typically	package)
• Tests	should	run	fast
• Tests	should	be	independent

• Tests	are	methods	without	parameter	and	return	value
• AssertError	signals	failed	test	(unchecked	exception)

• Test	Runner	knows	how	to	run	JUnit	tests
– (uses	reflection	to	find	all	methods	with	@Test	annotat.)

5115-214

Test	organization

• Conventions	(not	requirements)
• Have	a	test	class	FooTest for	each	
public	class	Foo

• Have	a	source	directory	and	a	test	
directory
– Store	FooTest and	Foo	in	the	same	
package

– Tests	can	access	members	with	
default	(package)	visibility

5215-214

Testable	code

• Think	about	testing	when	writing	code
• Unit	testing	encourages	you	to	write	testable	code
• Modularity	and	testability	go	hand	in	hand
• Same	test	can	be	used	on	multiple	
implementations	of	an	interface!

• Test-Driven	Development
– A	design	and	development	method	in	which	you	write	
tests	before	you	write	the	code

– Writing	tests	can	expose	API	weaknesses!

5315-214

Run	tests	frequently

• You	should	only	commit	code	that	is	passing	all	tests
• Run	tests	before	every	commit
• If	entire	test	suite	becomes	too	large	and	slow	for	rapid	
feedback:
– Run	local	package-level	tests	("smoke	tests“)	frequently
– Run	all	tests	nightly
– Medium	sized	projects	easily	have	1000s	of	test	cases

• Continuous	integration	servers	help	to	scale	testing

5415-214

Continuous	integration	- Travis	CI

Automatically
builds, tests, and
displays the
result

5515-214

Continuous	integration	- Travis	CI

You can see the
results of builds
over time

5615-214

Outlook:	statement	coverage

• Trying	to	test	all	parts	of	the	implementation
• Execute	every	statement,	ideally

• Does	100%	coverage	guarantee	correctness?

5715-214

Summary

• Use	try-with-resources,	not	manual	cleanup
• Override	equalswhen	you	need	value	semantics
• Override	hashCodewhen	your	override	equals
• Enums are	awesome
• Document	contract	of	every	method
• Test	early,	test	often!

